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Abstract. From the analytical properties of the third-harmonic generation susceptibility and
from its asymptotic behaviour in the frequency variable, a set of eight Kramers–Kronig relations
and nine sum rules are obtained. These universal constraints are used to generate a simplified
model for the static limit ofχ(3) in insulating systems with inversion symmetry. The static limits
of χ(3) calculated within this model for silicon and germanium are shown to be in qualitative
agreement with the experimental data.

1. Introduction

Although the search for efficient nonlinear optical materials would greatly benefit from a
reliable theoretical estimate of the nonlinear susceptibilities of these systems, any ‘first-
principles’ method is commonly known to be inapplicable for systems exceeding the unit-
cell size of a few atoms. The fundamental reason for this failure is the presence, in the
theoretical expression for the nonlinear susceptibilities, of summations over the (infinite)
set of excited states, for which both their dipole matrix elements and their energies must be
known. The search for simplified methods for the calculation of the nonlinear susceptibilities
has therefore been an active field of research starting from the late 1960s, when the first
nonlinear optical experiments were performed. It has recently been shown that the nonlinear
susceptibilities must satisfy a set of stringent and general constraints, namely sum rules,
which depend on the specific nonlinear phenomena considered [1]. Apart from the intrinsic
relevance of these relations, the existence of universal constraints can be of great help
in approximate calculations of the nonlinear susceptibilities. For example, a set of sum
rules found [2] for the second-harmonic generation (SHG) susceptibilityχ(2)(ω, ω) have
been used [3] to determine the parameters of a very simplified model for the static limit
of χ(2). Once this model susceptibility had been forced to verify the sum rules, excellent
agreement with the experimental results was found for a large number of III–V and II–VI
semiconductors. In addition, the model susceptibility was shown to satisfy Miller’s well
known phenomenological rule [4].

Recent experimental work has demonstrated that the real and the imaginary parts of
the nonlinear susceptibilityχ(3)(ω, ω, ω), responsible for third-harmonic generation (THG),
can be separately measured in a wide frequency range [5]. This opened up the possibility
of verifying the Kramers–Kronig relations forχ(3) [6], in agreement with earlier theoretical
findings [7]. Using a theory recently developed to uncover the consequences of causality
on the frequency-dependent nonlinear susceptibilities [1], this paper aims at presenting the
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full set of Kramers–Kronig relations and sum rules that the real and the imaginary parts of
χ(3)(ω, ω, ω) must verify. The extreme usefulness of Kramers–Kronig relations and sum
rules for thelinear response, documented by a huge literature in the past decades, suggests
a variety of similar applications in thenonlinear case. Insofar asχ(3) is concerned, these
relations could be used, for example, to extract the phase ofχ(3) from its modulus, they
could provide strict constraints on the behaviour ofχ(3) outside the frequency range of
measurement, and they could be of help in the normalization of measured spectra (absolute
measurements are particularly difficult in nonlinear optics).

In section 2 we give the basic definitions and we find the asymptotic limit of
χ(3)(ω, ω, ω) in the frequency variable. In section 3 we obtain the set of eight Kramers–
Kronig relations and nine sum rules. Finally, on the basis of these sum rules, a simplified
model forχ(3) in systems with inversion symmetry is proposed in section 4. In section 5
we test this model in the case of silicon and germanium, and good agreement is found with
the experimental data.

2. Definitions and asymptotic behaviour

The third-order contribution to the nonlinear polarizabilityP (t) in terms of the electric field
E(t) is

P
(3)
i (t) =

∫
dt1

∫
dt2

∫
dt3G

(3)
ijkl(t1, t2, t3)Ej (t − t1)Ek(t − t2)El(t − t3) (1)

where the Kubo response function [8] in third order, with Cartesian indicesi, j, k and l is

G
(3)
ijkl(t1, t2, t3) = − e4

6i�h̄3

∑
P

θ(t1)θ(t2 − t1)θ(t3 − t2)

×Tr
{[

xl(−t3), [xk(−t2), [xj (−t1), xi ]]
]
ρ0

}
(2)

� being the total volume,P any permutation of the pairs(t1, j), (t2, k) and (t3, l), θ the
Heaviside step function,x denoting the total position operator

∑
α x(α) (α = 1, ..., N is

the number of electrons),ρ0 a stationary density matrix (such that [ρ0, H0] = 0). The
total position operator evolves, in the Heisenberg picture, according to the unperturbed
HamiltonianH0 = ∑

α

[
p2

α/(2m) + V (rα)
] + Vee, where the total potential energy is split

into an external contributionV (which includes ion–electron interactions), plus the electron–
electron interactionVee.

The phenomenon of third-harmonic generation can be obtained considering a
monochromatic electric field of frequencyω, performing the integrals in (1) and selecting
the contribution to the polarizability at frequency 3ω. We obtain

P
(3)
i (t)3ω = χ

(3)
ijkl(ω, ω, ω)Ej (t)ωEk(t)ωEl(t)ω (3)

whereχ(3)(ω, ω, ω) is the Fourier transform ofG(3)(t1, t2, t3) with ω1 = ω2 = ω3. Defining
τ+ = t1 + t2 + t3, τ1 = t1 − t2 andτ2 = t2 − t3 we have

χ
(3)
ijkl(ω, ω, ω) =

∫
dτ+eiωτ+

∫
dτ1

∫
dτ2G

(3)
ijkl(t1, t2, t3). (4)

The asymptotic behaviour of equation (4) asω → ∞ can be obtained by integrating by
parts onτ+ and assuming thatG(3) and all its derivatives vanish at infinite times. We obtain

χ(3)(ω, ω, ω) = −
∑
m

[∫
dτ1dτ2

∂m

∂τ+m G(3)(t1, t2, t3)
]
τ+→0+

(−iω)m+1
. (5)
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The evaluation of (5) is performed using (2) and calculating out analytically the
derivatives. Following closely the derivation presented in [2] we obtain, after some lengthy
but straightforward algebra, the asymptotic behaviour

χ
(3)
ijkl(ω, ω, ω) =

Ne4

27m4

〈
∂4V

∂xi∂xj ∂xk∂xl

〉
0

ω8
+ o(ω−8) (6)

whereN is the electron density, the average is performed in the ground state of the system
ando(ω−8) stands for a term that decaysstrictly fasterthanω−8.

3. Kramers–Kronig relations and sum rules

Since the analytical properties ofχ(3)(ω, ω, ω) as a function ofω, have already been
assessed [7, 1], we can consider all types of analytical functionsωnχ(3) that vanish
sufficiently quickly at infinity to be square integrable. This occurs up ton = 6. Then,
by Titchmarsh’s theorem [9] and using the fact thatχ(3)(−ω, −ω, −ω) = χ(3)?(ω, ω, ω),
we obtain the following set of eight Kramers–Kronig relations, where the tensorial indices
have been dropped for convenience:

Reχ(3)(ω, ω, ω) = 2

πωm

∫ ∞

0

ω′m+1Imχ(3)(ω′, ω′, ω′)
ω′2 − ω2

dω′ (7)

Imχ(3)(ω, ω, ω) = − 2

πωm−1

∫ ∞

0

ω′mReχ(3)(ω′, ω′, ω′)
ω′2 − ω2

dω′ (8)

with m = 0, 2, 4 and 6.
Although the above Kramers–Kronig relations form = 0 closely resemble those found

in the linear case, and have indeed previously been established by Ridener and Good [7]
and experimentally verified by Kishidaet al [6], the additional relations withm = 2, 4 and
6 are peculiar to the THG susceptibility and may also find direct application in the analysis
of experimental data.

From the above Kramers–Kronig relations, a preliminary set of seven sum rules can be
easily obtained by consideringω = 0 in (7) and (8). Whenm = 0 in (7) we have

χ(3)(0, 0, 0) = 2

π

∫ ∞

0

Imχ(3)(ω′, ω′, ω′)
ω′ dω′. (9)

We also obtain, from (8),∫ ∞

0
ωnReχ(3)(ω, ω, ω)dω = 0 (10)

with n = 0, 2 and 4. From (8) we have∫ ∞

0
ωnImχ(3)(ω, ω, ω)dω = 0 (11)

with n = 1, 3 and 5.
Finally, using the superconvergence theorem [10] on the Kramers–Kronig relations (7)

and (8), whenm = 6, and comparing the asymptotic behaviour thus obtained with the
asymptotic behaviour independently derived in expression (6), we obtain the two additional
sum rules ∫ ∞

0
ω6Reχ(3)(ω, ω, ω)dω = 0 (12)
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and ∫ ∞

0
ω7Imχ

(3)
ijkl(ω, ω, ω)dω = − π

54

Ne4

m4

〈
∂4V

∂xi∂xj ∂xk∂xl

〉
0

. (13)

The tensorial indices have been explicitly reported only in (13), since only in this case
does the value of the constant on the right-hand side (RHS) depend on them. Although
the additional sum rule (12) can be formally re-cast into expression (10) by extending the
validity of the latter up ton = 6, sum rule (13) is peculiar to THG, and can be formally
considered as the analogue of the well-known absorption sum rule of linear optics, although
Imχ(3) is by no means related to absorption processes, but simply to the phase of the third-
order polarizability. Moreover, being the only non-vanishing sum rule, equation (13) can
be assumed a measure of the overall strength of THG in a given system.

We conclude this section by stressing that no approximations have been introduced
in order to derive the above Kramers–Kronig relations and sum rules. Their validity is
therefore general, the only system-dependent quantity being the average on the RHS of sum
rule (13). In spite of the extreme sensitivity ofχ(3)(ω, ω, ω) to the energies and dipole
matrix elements of the excited states, its frequency moments (10)–(12) vanish, or, as in (13),
they are simply related to ground-state properties such as the ground state wavefunction and
the external potential.

4. A simplified model for the static limit of χ(3)

Although widely documented and characterized experimentally, the phenomenon of THG
in solids and in particular in semiconductors, lacks a firm theoretical understanding. Many
different approaches have been devised to handle the formidable task of summing three
times over the complete set of excited states, as required by perturbation theory to third
order. Apart from the early empirical attempts by Jha and Bloembergen [13], Levine [14]
and Flytzanis [15], the more recent calculations [16–18], based on first-principles methods,
are still to be considered unsatisfactory, since only an order-of-magnitude agreement with
experiments is typically claimed.

Any model, particularly those based on first principles, must satisfy the above Kramers–
Kronig relations and sum rules, and we believe this is the case for all approaches proposed so
far. In the following sections, however, we propose a different approach for the evaluation of
the THG susceptibility, namely we force avery simplified model forχ(3) to satisfy the sum
rule constraints. The qualitative agreement of this oversimplified theory with experiments
is taken as an indication of the extreme usefulness of sum rules in the theory of THG.

The model we propose, analogously to that which has already been done for SHG [3],
is based on a single resonant frequencyω0 and follows from the exact expression of the
THG susceptibility [12]

χ
(3)
ijkl(ω, ω, ω) = e4

�h̄3

∑
m,n,p

( 〈ψg|xi |ψp〉〈ψp|xj |ψm〉〈ψm|xk|ψn〉〈ψn|xl|ψg〉
(ωpg − 3ω − iγ )(ωmg − 2ω − iγ )(ωng − ω − iγ )

+ 〈ψg|xj |ψp〉〈ψp|xi |ψm〉〈ψm|xk|ψn〉〈ψn|xl|ψg〉
(ωpg + 3ω − iγ )(ωmg − 2ω − iγ )(ωng − ω − iγ )

+ 〈ψg|xj |ψp〉〈ψp|xk|ψm〉〈ψm|xi |ψn〉〈ψn|xl|ψg〉
(ωpg + 3ω − iγ )(ωmg + 2ω − iγ )(ωng − ω − iγ )

+ 〈ψg|xj |ψp〉〈ψp|xk|ψm〉〈ψm|xl|ψn〉〈ψn|xi |ψg〉
(ωpg + 3ω − iγ )(ωmg + 2ω − iγ )(ωng + ω − iγ )

)
(14)
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by re-writing it in the algebraically equivalent expression (tensorial indicesijkl on theα

coefficients have been omitted for the sake of clarity)

χ
(3)
ijkl(ω, ω, ω) =

∑
n

αn
1

(ωn − ωg − ω − iγ )

+ αn
2

(ωn − ωg − 2ω − iγ )
+ αn

3

(ωn − ωg − 3ω − iγ )

+
∑
n′

αn′
4

(ωn′ − ωg − ω − iγ )2
+

∑
n′′

αn
5

(ωn′′ − ωg − ω − iγ )3

+
∑
n′′′

αn′′′
6

(ωn′′′ − ωg − 2ω − iγ )2
+ (ω → −ω)∗ (15)

wheren′ labels doubly resonant states, namely states for which another stateq exists such
that ωqn′ = ωn′g or 2ωqn′ = ωn′g, n′′ labels triply resonant states, namely states for which
another two statesq and q ′ exist such thatωqq ′ = ωq ′n′′ = ωn′′g; and finally n′′′ labels
states for which another stateq exists such that 2ωqn′′′ = 3ωn′′′g. In systems with inversion
symmetry, it can easily be seen from (14) that some of the above summations are restricted
to states with the same parity as the ground stateg (even states). This occurs for the
summation overn in the second term on the RHS of (15) and for the summation overn′′′

in the last term. On the other hand, the remaining summations are restricted to states with
opposite parity with respect tog (odd states). In our simplified single-frequency model
we assume that the excitation energy of the odd states is ¯hω0, whereas even states lie yet
higher in energy by ¯hω0. The extreme crudeness of the single-frequency model is such that
it is clearly not deemed reliable in the frequency range in which the excitations take place,
in which many resonances and a complicated dispersion are expected. However, once the
sum rules have been imposed, we expect this model to be sufficiently accurateoutsidethis
frequency range, namely at high frequencies (in which it is actually asymptotically exact)
and in the low-frequency limit, at which it will be compared with the experimental data.

Given the above assumption concerning the excitation frequencies, expression (15)
reduces to

χ
(3)
ijkl(ω, ω) = α1

(ω◦ − ω − iγ )
+ α3

(ω◦ − 3ω − iγ )

+ α4

(ω◦ − ω − iγ )2
+ α5

(ω◦ − ω − iγ )3
+ (ω → −ω)∗. (16)

Imposing the sum rules (11) and (13) upon the above expression for the THG susceptibility
completely determines the value of the parametersα as a function of the constantc on the
RHS of sum rule (13) and of the frequencyω0, as follows:

α1 = −1269

512

c

ω7
0

α3 = 6561

512

c

ω7
0

α4 = −135

128

c

ω6
0

α5 = − 9

128

c

ω5
0

.

(17)

Substituting these values into (16), in the limitγ → 0, we obtain

χ
(3)
ijkl(ω, ω, ω) = Ne4

3m4

〈
∂4V

∂xi∂xj ∂xk∂xl

〉
0

1

(9ω2 − ω2
0)(ω

2 − ω2
0)

3
. (18)
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where no implicit summation on the repeated indices is assumed. Since the linear
susceptibility is given, in the single-frequency approximation, by

χ
(1)
ii (ω) = Ne2

m

1

(ω2◦ − ω2)
(19)

the THG susceptibility can finally be written as

χ
(3)
ijkl(ω, ω, ω) = 1ijklχ

(1)
ii (3ω)χ

(1)
jj (ω)χ

(1)
kk (ω)χ

(1)
ll (ω). (20)

with 1ijkl being given by

1ijkl = −

〈
∂4V

∂xi∂xj ∂xk∂xl

〉
0

3N3e4
. (21)

Due to the close resemblance of expression (20) to the phenomenological rule proposed by
Miller [4] for SHG, it has been suggested that equation (20) might hold also in the case of
THG [13, 26]. Our simple model not only reproduces this phenomenological rule, but also
provides an expression for the1ijkl coefficient. Again, equation (20) is thought to be valid
only in the high-frequency and the low-frequency regions of the optical spectrum. Since
the high-frequency asymptotic behaviour of (20) has already been shown to be exact, we
will compare, in the following section, the static limit of (20) with experimental data for Si
and Ge.

5. The static limit

The static limit of (20) in a cubic system simply gives

χ
(3)
ijkl(0, 0, 0) = −

〈
∂4V

∂xi∂xj ∂xk∂xl

〉
0

3N3e4
χ(1)(0)4 . (22)

Moreover, the diamond crystal symmetries impose that the only non-vanishing components
of χ(3) are χ

(3)

1111 and χ
(3)

1212. Since the static limit of the linear susceptibility is known,
we are left with evaluating the expectation value of the fourth derivative of the potential.
In particular, since only negligible effects are expected on the static limit ofχ(3) from
the electronic core levels, we get rid of these levels by taking the fourth derivative of the
pseudo-potentialVp and performing the average on the valence electrons only. This can be
performed in reciprocal space as〈

∂4V

∂xi∂xj ∂xk∂xl

〉
0

= �c

∑
G

GiGjGkGln
?(G)Vp(G) (23)

where�c is the unit-cell volume,G a reciprocal lattice vector, andn(G) and Vp(G) the
Fourier transforms of the valence electron density and pseudo-potential, respectively. We
observe, however, that, in the definition of the pseudo-potentials the screening due to the
interaction between valence electrons is often taken into account, even though the bare
ionic potential should be used, as shown in section 2. If this is the case, we must subtract,
as a first approximation, the Hartree contribution due to the electron density, so that, in
reciprocal space, we have

Vp(G) = V (s)
p (G) − 4π

G2
n(G) (24)

whereV (s)
p is the screened pseudo-potential. In the specific cases of Si and Ge, we use

the valence charge density computed by Chelikowsky and Cohen [23], and the screened
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pseudo-potential form factors of Cohen and Bergstresser [24]. The resulting values ofχ(3)

are listed in table 1 together with the experimental data available in the literature. Also
reported in table 1 are the results of other recent calculations of the static limit ofχ(3). The
results of table 1 indicate that our estimates for silicon agree well with experiments within
the experimental accuracy, whereas for germanium they disagree by at most a factor of
eight. The overall agreement of our calculations is, however, comparable to that obtained
with first-principle or other extensive techniques. A possible source of discrepancy with
experiments, in the case of Ge compared with Si, is the single-frequency approximation
adopted. This approximation is in fact more reliable in systems with larger energy gaps and
smaller band widths, for which the static limit of the optical constants is less affected by
the finite width of the excitation spectrum.

Table 1. Calculated values ofχ(3)
1111, χ

(3)
1212 and χ

(3)
1212/χ

(3)
1111, in units of 10−11 esu, compared

with experimental data from [26] and with other calculations based on different approaches.

χ
(3)
1111 χ

(3)
1212 χ

(3)
1212/χ

(3)
1111

Present Other Present Other Present Other
calc. Experiment calcs. calc. Experiment calc. calc. Experiment calcs.

3.07a 1.90a 0.62a

Si 2.99 2.4 ± 1.5 0.8b 0.98 1.15± 0.7 0.5b 0.33 0.48 0.63b

4.8c 2.3c 0.48c

30.7a 10.3a 0.33a

Ge 8.89 40± 20 6.9b 2.99 24± 12 6.9b 0.34 0.60 1.0b

206c 102c 0.5c

a [18].
b [16] using a semi-ab-initio method.
c [16] using an empirical tight-binding method.

Also reported in table 1 is the ratioχ(3)

1212/χ
(3)

1111, which is supposed to be affected by
a smaller experimental uncertainty than are the single values ofχ(3) [25]. Again, our
calculation predicts a value for this ratio in reasonable agreement with experiments for Si,
but rather inaccurate for Ge. Notice that the values of the ratio both for Si and for Ge are
very close to the value of a third of an isotropic medium [26], the anisotropy parameter
σ = (3χ

(3)

1212− χ
(3)

1111)/χ
(3)

1111 being almost vanishing for both semiconductors.

Table 2. Calculated values of Miller’s constants11111 and11212, in units of 10−11 esu, with
experimental data taken from [26].

11111 11212

Present calculation Experiment Present calculation Experiment

Si 5.09 4.0± 2.4 1.67 2.0± 1.2
Ge 4.38 20± 10 1.47 12± 6

In table 2 we report the calculated values of Miller’s delta1ijkl , compared with the
experimental data. Although the tiny reduction in this constant from Si to Ge could be
well interpreted as support for the empirical rule found for SHG, for which in fact the
value of Miller’s constant varies by only±20% with respect to the average value in III–V
compounds, the experimental data seem to disprove the validity of this rule for THG.
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6. Conclusions

Universal constraints for the third-harmonic nonlinear susceptibility, in the form of Kramers–
Kronig relations and sum rules, have been presented. Their usefulness in the construction
of approximate models forχ(3)(ω, ω, ω) has been demonstrated in the specific case of a
single-frequency model. It has been shown that once sum rules are imposed on this very
crude model, reasonable agreement with experiments is found for the static limit ofχ(3) in
silicon and germanium.
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